

    
      
          
            
  
Using AIMS to Analyze Immune Repertoires


[image: AIMS Graphic By Anna Borowska]

AIMS Graphic created by Anna Borowska (see https://annazofiaborowska.com/)




Note

This readthedocs site is still under development. Hopefully what is included thus far helps users, but more information is coming soon!



AIMS, an Automated Immune Molecule Separator, was originally developed to identify differences between two distinct antibody repertoires, but has since expanded to become a multi-purpose repertoire analysis tool. Currently the AIMS analytical tools can be applied to immunoglobulin (Ig) molecules such as T cell receptors and antibodies, major histocompatibility complex (MHC) and MHC-like molecules, and immunopeptidomic data. This documentation will teach users how to use AIMS to:


	Get started following the Installation Instructions.


	Analyze repertoires with no programming experience required in a user-friendly format with the AIMS GUI Walkthrough.


	Characterize the key features of immune repertoires using the AIMS biophysical characterization tools through the AIMS Basics section. This biophysical characterization is the central feature of AIMS, taking properly formatted files (see Input Formatting) and applying analytical tools from the Core Functionalities of AIMS for downstream manipulation.


	Identify biophysically distinct repertoire clusters within single repertoires or comparing across multiple repertoires using the AIMS Cluster features.


	Build off the AIMS analysis with your own custom features by taking advantage of the AIMS Jupyter Notebooks.




AIMS is a python package distributed in both a notebook and GUI format. Those wishing to use the GUI, particularly those relatively new to programming, can follow the installation instructions below. Example data is provided in AIMS/app/ab_testData and AIMS/app/mhc_testData, and an example of an application of AIMS can be seen in this peer-reviewed article: https://elifesciences.org/articles/61393


Note

When publishing analysis from this software, please cite:

Boughter CT, Borowska MT, Guthmiller JJ, Bendelac A, Wilson PC, Roux B, Adams EJ. Biochemical Patterns of Antibody Polyreactivity Revealed Through a Bioinformatics-Based Analysis of CDR Loops. eLife. 2020. DOI: 10.7554/eLife.61393
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Installation Instructions


Initial Installation for Beginners

These instructions will help novice programmers install all necessary packages and programs needed to run a python program. Mac/Linux OS preferred, these steps outline installation via Anaconda. Other installations should be supported but have had limited testing.


Note

If you are a more advanced programmer, skip to the Installation of AIMS & Required Packages section




	Install Anaconda (https://www.anaconda.com/products/individual) to manage the python packages we’re going to be using. This can be a fairly large package, so if space is at a premium for your computer, you can instead install miniconda (https://docs.conda.io/en/latest/miniconda.html). NOTE: Windows users should likely install the full Anaconda package, for a contained environment to run python programs from.


	Test that your conda install is working properly by creating a conda environment. Windows OS users, you will likely do this within the Anaconda application. Mac/Linux users, open the terminal application. Once terminal is open, type:




conda create -n aims-env python=3.7





If anaconda/miniconda is installed properly, a Y/N prompt should appear. Type “y” then hit the “enter key” and you will create a conda environment.


	If you haven’t already, you should download the code from https://github.com/ctboughter/AIMS.


	Next, navigate to the new folder created from this repository. First, open up terminal and enter the environment created earlier by typing:




conda activate aims-env






Note

Windows users will have to activate the environment from within Anaconda



You should now see a little extra bit of text on your terminal command line that looks something like “(aims-env)”. If this didn’t work for some reason, an error message should pop up, otherwise assume you’re fine.

Use terminal to navigate into the newly downloaded folder. If you’ve never used terminal before, you can type in “cd” and then drag and drop the folder into the terminal. Doing so should automatically populate the “path” to the folder. Then hit enter.

When I do this, my terminal line reads “cd /Users/boughter/Desktop/AIMS-master” hopefully you see something similar (replacing my user name with your own), and when you hit enter you can move to the next step.



Installation of AIMS & Required Packages

The above section focused on the installation of the necessary software to run python programming, as well as basic navigational instructions. In this section, instructions for installing requisite packages and running the GUI Are discussed.


	From within the AIMS master directory, type in the terminal:




./app/install_packages.sh






Warning

If you want to use Python 3.9, do not run the above command or install packages in the code block below. Instead, see closed issue #1 on the GitHub page [https://github.com/ctboughter/AIMS/issues/1] for working package versions.



This bash script should run after typing in this command, and you’ll be prompted with a bunch of [y]/n prompts, for which you should consistently enter “y” then the “enter key”.


Note

For more advanced users, you shouldn’t need to use these EXACT package versions, save for Biophython and SciKit-Learn. However, using these versions should guarantee proper functionality of AIMS



If the install_packages.sh script doesn’t work, and you get some kind of an error instead of the prompts, type each of these lines (or copy/paste) one by one, hitting enter after each one:

conda install -c conda-forge biopython=1.76
conda install -c conda-forge scipy=1.4.1
conda install pandas=1.0.3
conda install numpy=1.18.1
conda install matplotlib=3.1.3
conda install scikit-learn=0.22.1
conda install seaborn=0.10.1
conda install -c conda-forge kivy=2.0.0






	Everything should now be installed, you should now be able to open up the software! Navigate to the app in terminal by typing:




cd app






	Launch the GUI with:




python aims.py





From there, the GUI should open. A step by step instruction guide for GUI usage can be found in the AIMS GUI Walkthrough section. If you don’t want to be bothered reading instructions, the app should prevent most major errors. If a “next” button is grayed out, make sure you’ve pressed all of the analysis buttons on the bottom of the current AIMS app screen.

If you’re a more advanced user and would prefer a more customizable experience, check out the AIMS Jupyter Notebooks section.

Lastly, if you’re generally interested in an overview of what AIMS does and how it works, refer to the AIMS Basics.



Footnotes



            

          

      

      

    

  

    
      
          
            
  
AIMS GUI Walkthrough

The AIMS analysis pipeline has been used to analyze a wide range of molecular species, including TCRs, antibodies, MHC molecules, MHC-like molecules, MHC-presented peptides, viral protein alignments, and evolutionarily conserved neuronal proteins. The GUI is currently only capable of analyzing these first four molecular species, with more analysis options hopefully available in the future.

This section will provide a step-by-step walkthrough outlining how to use the AIMS Graphical User Interface (GUI) through screenshots of the app. The focus will be primarily on how to interface with the GUI, how files are saved when using the GUI, and tips and tricks for a smooth AIMS experience. Before starting the GUI, you may want to check out the AIMS Basics and review the Input Formatting and Core Functionalities.

When launching the GUI, this screen should be the first thing that you see:


[image: The launch screen of the AIMS GUI]

The navigation through the AIMS GUI is linear and button-based, allowing users to simply click through all of the analysis. If you’d like to analyze antibody (Ab) or T cell receptor (TCR) sequences, start with the Immunoglobulin Analysis with AIMS section. If you’d like to analyze MHC and MHC-like molecules, skip down to the MHC and MHC-Like Analysis with AIMS section.


Immunoglobulin Analysis with AIMS

This section is specifically for the analysis of T cell receptors and antibodies. The analysis and formatting are identical for each of these receptor types, and one could even analyze these receptor types simultaneously, if for some reason one wanted to.

Step 1: Loading in Data

Assuming the input data is already properly formatted, everything should easily flow through the GUI and generate all data required. The first screen after selecting the Ig analysis should look like the first panel in the below image:


[image: Example screenshot of the data loading screen]

Once you click one of those light gray “Load File” buttons, you should get a screen that looks like the image in the second panel. From this, you can click through your directories and select the file you want to load in. If the file has been properly loaded, the File Path should be updated to reflect the file location.


Note

If following along with this walkthrough, select the “ab_testData” directory and load in flu_mono.csv and flu_poly.csv



If you would like to analyze only one dataset using AIMS, change the “ON/OFF” switch in the top right-hand corner to “ON”. Otherwise, the AIMS GUI will require at least two datasets to be loaded into the analysis. Additionally, if the data of interest is spread across more than four files, click the “add more files” option to increase the number of file slots on the screen. As of AIMS_0.5.5, a max of 9 files may be analyzed at once.

Step 2: Define Names and Outputs

In this step, we define the folder which the outputs are saved to, the labels that will accompany the datasets in figure legends, and the number of CDR loops in the input data. Further, the AIMS GUI removes expanded clones and sequence duplicates by default. Uncheck the “Remove Expanded Clones” box if you’d like to include degenerate receptors.


[image: Example screenshot of the directory naming and dataset labelling step]


Warning

Defining the output directory is very important, as by default files are overwritten if the AIMS analysis is run multiple times. Ideally each new run of AIMS should be output to a new directory, with a descriptive title.



Step 3: Generate the Sequence Matrix

In this step, we begin the dive in to the automated portion of the “Automated Immune Molecule Separator”, generating an AIMS-encoded matrix form of the sequences in our dataset. Most steps from here on require a simple clicking of a button, here “Get Matrix”, and moving on to the next step. Users are given the option to change the AIMS aligment scheme, with “Center Align” as the default option. See the Core Functionalities section of the documentation for more information on these alignment schemes. As an example, both the bulge alignment (center panel), and the central alignment (right panel) are highlighted below.


[image: Example screenshots of the AIMS matrix generation step]

Congrats! You’ve generated your first piece of data using this software. You might notice that your image quality is poor for figures shown in the app, this is because the software shows *png files. Don’t worry, both a *png and a higher-quality *pdf version of the plot are saved in whichever directory you specified in Step 2. This is true for subsequently generated figures.

Additionally, as you move through the sequential steps of the GUI, keep in mind that all generated figures have corresponding raw data saved to a *.dat file, should the user want to re-plot the data using a different color scheme, different plotting application, etc. For screen 3, the output figures are matrix.png and matrix.pdf, while the ouput raw data is saved as raw_matrix.dat.


Note

Whichever alignment is chosen at this step will be used for all downstream analysis from this point. In other words, analysis of the central alignment may be different from analysis of the left or right aligments.



Step 4: Generate High-Dimensional Biophysical Matrix

In this step, we generate the high-dimensional biophysical property matrix that will be used in all downstream analysis. We then have the option to include or exclude files from the clustering that will happen in the next step. If only one or two datasets are included in the analysis, all input data must be included in the clustering. Again, we simply press the “Generate Matrix” button, shown below, and then users can move on to the next step.


[image: Example screenshot of data inclusion/exclusion step]


Note

Don’t worry if this step takes a little while, especially for larger datasets. This will be the slowest and most memory-intensive step in the analysis.



While most users may not want to leave any datasets out of the clustering of Step 5, there are some interesting applications of AIMS where the exclusion of certain datasets has interesting impacts on receptor clustering. It is important to remember that the UMAP and PCA dimensionality reduction steps are strongly dependent on the input data. Learn more about this input data dependence in the AIMS Cluster section.

Step 5: Dimensionality Reduction and Receptor Clustering

The goal in this step is to take that large biophysical property matrix generated in the previous step, and reduce this high-dimensional matrix down to two or three composite dimensions, and then cluster the receptors projected onto this space based upon distance in this projected space. This step is perhaps the most involved in the GUI, with the most customizable options. Hence the dedicated AIMS Cluster section detailing the possibilities for this analysis.

First, the user must decide if they would like to reduce dimensionality on Net Average Properties, i.e. the biophysical properties averaged across entire receptors, or on the Position Sensitive Properties, i.e. the amino acid biophysical properties at every position on every receptor.

Next, the algorithm used for this dimensionality reduction must be chosen. Users can choose either Principal Component Analysis (PCA) or Uniform Manifold Approximation and Projection (UMAP), and additionally choose to visualize these projections in two- or three-dimensions. Once these options are chosen, click the “Reduce Dim” button to visualize these options. More options can be tested and the projection re-visualized as many times as the user desires.

Lastly, the data is then clustered using one of three algorithms, either K-Means, OPTICS, or DBSCAN clustering. Users must also define, for each of these algorithms, a tunable parameter that determines the size of the clusters generated. We can see each of these options, and the default values for the tunable parameters, in the screenshots below.


[image: Example screenshots of dataset dimensionality reduction and receptor clutering]

For more detail on how these dimensionality reduction and clustering algorithms work, as well as details on the tunable parameters, please see the AIMS Cluster section.

In the above screenshots, we see first the default screen (top left), then the three-dimensional PCA projection (top right), followed by a Kmeans clustering with 5 clusters (bottom left), and lastly an OPTICS clustering with a minimum cluster size of 5 (bottom right). Users should note that Kmeans will cluster all sequences in the dataset, while OPTICS and DBSCAN will exlude sequences that are not found at a sufficient density in the projection. These unclustered sequences are grayed out in the resultant displayed figure.

There is no one right answer to determining the “best” dimensionality reduction or clustering algorithm, so users are encouraged to try a range of options to determine which combination makes the most sense for their data. Importantly for this step, generated figures and data from each dimensionality reduction and clustering algorithm are not overwritten. You will see in the output directory descriptive filenames that correspond to each option used. Importantly however, for each given clustering algorithm only one file will be saved. If, for instance, you cluster your data using the Kmeans algorithm with “# Clusters” set to 5, then run it again with “# Clusters” set to 10, the output figures and data will reflect only the “# Clusters = 10” configuration. Lastly, raw data outputs “umap_3d.dat” or “pca_3d.dat” give the location of each sequence in the reduced dimensionality projection. Raw data outputs for the clustering steps “optics_3d.dat” or “dbscan_3d.dat” reflect the cluster membership of each given sequence, with the order of sequences preserved based upon your input datasets.


Note

Whichever projection and clustering algorithm the user is currently viewing when moving to the next step is what will be used in all downstream analysis



Step 6: Visualize and Analyze Clustered Sequences

At this stage, we visualize the clustered sequences from the previous step. First, the user must hit the “Visualize Cluster” button, then after visual inspection of the clusters and sequences, the “comparison clusters” can be selected. The goal of this step is to determine whether the user wants to compare two biophysically distinct clusters which were identified in the previous step, or compare across the input datasets. We can see in the screenshot below how this works:


[image: Example screenshots of the AIMS cluster visualization step]

After the cluster visualization is complete, we see in the right panel, left figure that the matrix from step 3 is rearranged to reflect the clustered sequences, with higher sequence conservation (colors in the matrix) evident within each cluster. In the right figure, we see the sequence count of each input dataset in each cluster.

From this information, the user can determine which clusters they would like to analyze by entering values in the “Comparison Cluster” boxes. The cluster count starts at zero, and the user can infer the last cluster number from the figure on the right. The amino acid sequences from the selected clusters will be saved to the output directory as “clust2seq_#.txt” where the “#” is the cluster number for each respective dataset.

If the user instead is still most interested in comparing the input datasets, the checkbox on the right side of the screen can be checked, ignoring the clustering of the data (but still saving the results in the output directory!).


Warning

The clustering algorithms are stochastic, and so cluster ID and cluster membership may change each time the software is run. For instance, in this walkthrough I use clusters 10 and 11 for downstream analysis, but users trying to replicate this analysis may have different sequences in clusters 10 and 11. This is important both for comparisons in this walkthrough as well as creating reproducible analysis.



Step 7: Define Comparison Classes


Note

This screen is skipped when cluster analysis is chosen, rather than original group analysis



Here, we separate our loaded data into separate classes for downstream analysis, assuming the user opted not to compare clustered sequences. As a default, each loaded dataset is assigned to its own unique group, but the user may group these datasets however they choose by assigning matching group numbers to datasets they want analyzed together. For the immmunoglobulin analysis, the cluster comparison option is chosen, so this screen is not shown. To see the comparison class definition screen, jump to Step 7 in the MHC and MHC-Like Analysis with AIMS.


Warning

If comparing more than two distinct groups, some of the analysis will be unavailble. These analyses include mutual information analysis, amino acid frequency characterization, and linear discriminant analysis. Each of these analyses require binary classifications of the data.



Step 8: Visualize Averaged Position Sensitive Biophysical Properties

In this step we look at average biophysical properties as a function of sequence space, part of our special “positional encoding”. At this stage in the walkthrough we won’t bother showing the “before” snapshots of the GUI, as the only options are to press the button which generates the plot, and then move on to the next step. However, if you’re trying to compare the results to the data we get in this walkthrough, the generated plots are quite useful:


[image: Example screenshot of the averaged position-sensitive biophysical properties]


Note

Standard deviations are not shown, and ideally these would be calculated via bootstrapping



The figure in this step is saved as “pos_prop.pdf/png”, while the raw data is saved as “position_sensitive_mat#.dat” where the “#” again corresponds to the selected cluster number, or if comparing the original input datasets, the user-defined group number. This data file has as many rows as the number of sequences in the selected cluster or group, and has 61 x # AIMS positions columns. Ideally this data would be saved as a tensor of shape # sequences x 61 x # AIMS positions, however, this would require saving the data as a numpy object, which would be less friendly to other programming languages for replotting and reformatting. The 61 here refers to the 61 biophysical properties of AIMS (listed in the Biophysical Properties).

As a concrete example, cluster 10 in this walkthrough has 10 sequences, and 95 AIMS positions. So the first row of the position_sensitive_mat10.dat file here corresponds to the first sequence (which can be found in the “clust2seq_10.dat” output). The first 95 columns in this row correspond to the position sensitive charge (biophysical property 1 of 61). The next 95 columns correspond to the position sensitive hydrophobicity (biophysical property 2 of 61). And so on.

Step 9: Visualize Raw Position Sensitive Biophysical Properties

In this step, we visualize the position sensitive charge for all clones, not averaged. This figure can help provide a sense of how reliable the averages of the previous step are. Like all biophysical properties in AIMS, the charge is normalized, hence the minimum and maximum on the scales not equaling 1.


[image: Example screenshot of the non-averaged position-sensitive biophysical properties]

These figures are saved as “clone_pos_prop.pdf/png”. This figure helps to understand the figure generated in Step 8, which is simply this figure averaged over the y-axis. It is additionally important to note that the positional encoding in Steps 8 and 9 are consistent with the alignment scheme selected in Step 3, either central, bulge, right, or left aligned.

Step 10: Visualize Net Biophysical Properties

In this step, we are averaging the biophysical properties over all positions and all receptors. In other words, effectively averaging the figures generated in Step 9 over both the x- and the y-axes.


[image: Example screenshot of the net biophysical property figure step]


Note

A large standard deviation in these plots are to be expected, especially if users are analyzing original input datasets rather than selected cluster subsets



This figure is saved as “avg_props.pdf/png”.

Step 11: Calculate Shannon Entropy

In this step, we are calculating the Shannon Entropy of the chosen datasets, effectively the diversity of the receptors as a function of position. For more information on the Shannon Entropy, as well as the Mutual Information discussed in the next step, view the Information Theory section of the Core Functionalities.


[image: Example screenshot of the shannon entropy step]

This figure is saved as “shannon.pdf/png”.


Note

Due to the requirement for a binary comparison in subsequent steps, this is the last GUI screen if users are comparing more than 2 groups



Step 12: Calculate Receptor Mutual Information

In this step, we calculate the mutual information between the individual posiitons in the AIMS matrix. The y-axis provides the “given” amino acid, and the x-axis provides the amount of information we gain at every other position when we know the amino acid identity at the “given” position. We present this data as a difference between the mutual information of group 1 and the mutual information of group 2. The y-axis is measured in “Bits” the fundamental unit of information, with a positive value (green) indicating higher mutual information in the first group (here “Cluster 10”) and a negative value (pink) indicating higher mutual information in the second group (here “Cluster 11”).


[image: Example screenshot of the mutual information calculation]

This figure is saved as “MI.pdf/png”. The raw information matrices are saved as “MI_mat1.dat” amd “MI_mat2.dat”, and should be symmetric matrices with shape # AIMS postions x # AIMS positions.


Note

Shannon entropy and mutual information are always positive, i.e. there is no “negative information”, so we can be confident that negative values in this figure mean “higher mutual information in the second group” rather than “negative mutual information in the first group”.



Step 13: Visualize Amino Acid Frequencies

In this step, we calculate the position sensitive amino acid frequnecy for each analyzed cluster or group, and plot the difference. The simply reports these differences in frequency, with a positive value (green) indicating higher frequency of a given residue at a given position in the first group (here “Cluster 10”) and a negative value (pink) indicating higher frequency in the second group (here “Cluster 11”).


[image: Example screenshot of the amino acid frequency visualization]

This figure is saved as “frequency.pdf/png”. The raw position senesitive frequencies for each cluster or group are saved as “frequency_mat1.dat” amd “frequency_mat2.dat”, with each row corresponding to the AIMS position, and each column corresponding to the amino acids in the same order as they are presented in the figure.

Step 14: Linear Discriminant Analysis

In the original eLife manuscript, linear discriminant analysis was used to classify antibody sequences as “polyreactive” or “non-polyreactive” (see https://elifesciences.org/articles/61393). In this step, we use the same framework to instead classify either the selected clusters or the user-defined groups analyzed in the previous steps. For a deeper description of linear discriminant analysis, see Core Functionalities. So, while in the eLife manuscript the linear discriminant is a proxy for polyreactivity, in the AIMS GUI the linear discriminant is a metric of “more like group 1” or “more like group 2”. An example of overfit data (from a cluster analysis, left) and of a proper application of linear discriminant analysis (from a group analysis, right) can be seen below:


[image: Example screenshot of the linear discriminant analysis]


Warning

Care must be taken not to overfit. If the number of input vctors is greater than (or similar to) the size of one of your datasets, you will likely overfit the data



The LD1 “names” and “weights” refer to the top ten weights that most strongly split the data. In other words, LDA not only functions as a classifier, it also works as a means to identify the biophysical features that best discriminate between two datasets. The generated figure is saved simply as “lda.pdf/png” while the raw data to recreate the plot is saved as “lda_data.dat”. Lastly, the linear weights from which the linear discriminant is generated are saved as “lda_weights.dat”. The AIMS GUI will show at most the top ten weights, but users can split their data using as many features as they choose (assuming this number is less than the available features).


Note

You can tell that the left panel is overfit in part by the exaggerated weights, compared to the non-overfit weights in the right panel



END Ig Analysis

Congratulations for making it through the GUI walkthrough, and thanks again for using the software! Be sure to reach out if any part of this walkthrough is unclear or if there are questions/features you would like addressed in greater detail.



MHC and MHC-Like Analysis with AIMS

While a niche application of the software, AIMS readily extends to the analysis of any evolutionarily conserved molecules with specific regions of variability. MHC and MHC-like molecules fit very well into this category, and in the first published usage of AIMS, these moleclules were analyzed using the same tools as the immunoglobulin analysis. This section highlights the unique portions of the MHC analysis, and reiterates many of the points discussed in the above section for users only interested in the MHC and MHC-like analysis.


Note

Much of this documentation will be a verbatim repeat of the steps outlined above in the Immunoglobulin Analysis with AIMS, save for the first two steps which differ significantly



Step 1: Loading in Data

FASTA files should be aligned sequences, with a minimum of 2 sequences per file, and a minimum of 2 FASTA files per program run. For the MHCs, formatting should just be in normal FASTA format. For following along with the analysis, load in “mhc_testData/“cd1_seqs.fasta”.


[image: Example screenshots of the AIMS matrix generation step]

Step 2: Locate Helices and Strands

So this is my least favorite part of the software, but it turns out this is the most efficient way to do things. Here, we explicitly say where in the alignments the strands/helices start. In an attempt to make this slightly less annoying, I’ve made it possible to create pre-formatted matrices for repeated analysis.


[image: Example screenshots of the AIMS matrix generation step]

For this example, from mhc_testData load in ex_cd1d_hla_uda_uaa_ji.csv. So for FASTA1, Strand 1 starts (S1s) at position 124, Strand 1 ends (S1e) at pos 167, Helix 1 starts (H1s) at this same position. And so on… Lastly, ”new_folder” is where output figures will be saved. Change this to whatever you want your folder name to be. Each run overwrites the figures, so maybe change to ”run1”, ”run2”, etc.

How do we locate helices and strands? NOTE, for this tutorial, this step has been done already
We first align molecules of interest within a single group
We then take a representative molecule (here human CD1d) and put it through our favorite structure prediction (Phyre, PsiPred, etc.)
When then go back and find where in the alignments a structural feature roughly begins
Here S1 starts at ”FPL” which occurs at alignment position 127. We add 3 amino acids of buffer space (optional, you can change this if you want) and you can see on the previous slide S1s = 124

Already figured out locations of Helices/Strands (based on provided FASTA files):
For the ji_cartFish we have: 2,49,93,152,193
For the cd1d_seqs.fasta we have: 124,167,209,262,303
For the hlaA_seqs.fasta we have: 170,218,260,306,348
For cd1_ufa_genes.fasta: 22,66,105,158,199
For UAA or UDA fasta: 2,49,93,152,193
In the future, I hope to identify these helices and strands automatically within the software, but I haven’t found anything suitable yet for doing so

Step 3: Generate the Sequence Matrix

In this step, we begin the dive in to the automated portion of the “Automated Immune Molecule Separator”, generating an AIMS-encoded matrix form of the sequences in our dataset. Most steps from here on require a simple clicking of a button, here “Get Matrix”, and moving on to the next step. Users are given the option to change the AIMS aligment scheme, with “Center Align” as the default option. See the Core Functionalities section of the documentation for more information on these alignment schemes. As an example, both the central alignment (center panel) and the bulge alignment (right panel) are highlighted below.


[image: Example screenshots of the AIMS matrix generation step]

Congrats! You’ve generated your first piece of data using this software. You might notice that your image quality is poor for figures shown in the app, this is because the software shows *png files. Don’t worry, both a *png and a higher-quality *pdf version of the plot are saved in whichever directory you specified in Step 2. This is true for subsequently generated figures.

Additionally, as you move through the sequential steps of the GUI, keep in mind that all generated figures have corresponding raw data saved to a *.dat file, should the user want to re-plot the data using a different color scheme, different plotting application, etc. For screen 3, the output figures are matrix.png and matrix.pdf, while the ouput raw data is saved as raw_matrix.dat.

Step 4: Generate High-Dimensional Biophysical Matrix

In this step, we generate the high-dimensional biophysical property matrix that will be used in all downstream analysis. We then have the option to include or exclude files from the clustering that will happen in the next step. If only one or two datasets are included in the analysis, all input data must be included in the clustering. Again, we simply press the “Generate Matrix” button, shown below, and then users can move on to the next step.


[image: Example screenshot of data inclusion/exclusion step]


Note

Don’t worry if this step takes a little while, especially for larger datasets. This will be the slowest and most memory-intensive step in the analysis.



While most users may not want to leave any datasets out of the clustering of Step 5, there are some interesting applications of AIMS where the exclusion of certain datasets has interesting impacts on receptor clustering. It is important to remember that the UMAP and PCA dimensionality reduction steps are strongly dependent on the input data. Learn more about this input data dependence in the AIMS Cluster section.

Step 5: Dimensionality Reduction and Receptor Clustering

The goal in this step is to take that large biophysical property matrix generated in the previous step, and reduce this high-dimensional matrix down to two or three composite dimensions, and then cluster the receptors projected onto this space based upon distance in this projected space. This step is perhaps the most involved in the GUI, with the most customizable options. Hence the dedicated AIMS Cluster section detailing the possibilities for this analysis.

First, the user must decide if they would like to reduce dimensionality on Net Average Properties, i.e. the biophysical properties averaged across entire receptors, or on the Position Sensitive Properties, i.e. the amino acid biophysical properties at every position on every receptor.

Next, the algorithm used for this dimensionality reduction must be chosen. Users can choose either Principal Component Analysis (PCA) or Uniform Manifold Approximation and Projection (UMAP), and additionally choose to visualize these projections in two- or three-dimensions. Once these options are chosen, click the “Reduce Dim” button to visualize these options. More options can be tested and the projection re-visualized as many times as the user desires.

Lastly, the data is then clustered using one of three algorithms, either K-Means, OPTICS, or DBSCAN clustering. Users must also define, for each of these algorithms, a tunable parameter that determines the size of the clusters generated. We can see each of these options, and the default values for the tunable parameters, in the screenshots below.


[image: Example screenshots of dataset dimensionality reduction and receptor clutering]

For more detail on how these dimensionality reduction and clustering algorithms work, as well as details on the tunable parameters, please see the AIMS Cluster section.

In the above screenshots, we see first the default screen (top left), then the three-dimensional PCA projection (top right), followed by a Kmeans clustering with 5 clusters (bottom left), and lastly an OPTICS clustering with a minimum cluster size of 5 (bottom right). Users should note that Kmeans will cluster all sequences in the dataset, while OPTICS and DBSCAN will exlude sequences that are not found at a sufficient density in the projection. These unclustered sequences are grayed out in the resultant displayed figure.

There is no one right answer to determining the “best” dimensionality reduction or clustering algorithm, so users are encouraged to try a range of options to determine which combination makes the most sense for their data. Importantly for this step, generated figures and data from each dimensionality reduction and clustering algorithm are not overwritten. You will see in the output directory descriptive filenames that correspond to each option used. Importantly however, for each given clustering algorithm only one file will be saved. If, for instance, you cluster your data using the Kmeans algorithm with “# Clusters” set to 5, then run it again with “# Clusters” set to 10, the output figures and data will reflect only the “# Clusters = 10” configuration. Lastly, raw data outputs “umap_3d.dat” or “pca_3d.dat” give the location of each sequence in the reduced dimensionality projection. Raw data outputs for the clustering steps “optics_3d.dat” or “dbscan_3d.dat” reflect the cluster membership of each given sequence, with the order of sequences preserved based upon your input datasets.


Note

Whichever projection and clustering algorithm the user is currently viewing when moving to the next step is what will be used in all downstream analysis



Step 6: Visualize and Analyze Clustered Sequences

At this stage, we visualize the clustered sequences from the previous step. First, the user must hit the “Visualize Cluster” button, then after visual inspection of the clusters and sequences, the “comparison clusters” can be selected. The goal of this step is to determine whether the user wants to compare two biophysically distinct clusters which were identified in the previous step, or compare across the input datasets. We can see in the screenshot below how this works:


[image: Example screenshots of the AIMS cluster visualization step]

After the cluster visualization is complete, we see in the right panel, left figure that the matrix from step 3 is rearranged to reflect the clustered sequences, with higher sequence conservation (colors in the matrix) evident within each cluster. In the right figure, we see the sequence count of each input dataset in each cluster.

From this information, the user can determine which clusters they would like to analyze by entering values in the “Comparison Cluster” boxes. The cluster count starts at zero, and the user can infer the last cluster number from the figure on the right. The amino acid sequences from the selected clusters will be saved to the output directory as “clust2seq_#.txt” where the “#” is the cluster number for each respective dataset.

If the user instead is still most interested in comparing the input datasets, the checkbox on the right side of the screen can be checked, ignoring the clustering of the data (but still saving the results in the output directory!).


Warning

The clustering algorithms are stochastic, and so cluster ID and cluster membership may change each time the software is run. For instance, in this walkthrough I use clusters 10 and 11 for downstream analysis, but users trying to replicate this analysis may have different sequences in clusters 10 and 11. This is important both for comparisons in this walkthrough as well as creating reproducible analysis.



Step 7: Define Comparison Classes

Here, we separate our loaded data into separate classes for downstream analysis, assuming the user opted not to compare clustered sequences. As a default, each loaded dataset is assigned to its own unique group, but the user may group these datasets however they choose by assigning matching group numbers to datasets they want analyzed together.


[image: Example screenshot of the averaged position-sensitive biophysical properties]


Warning

If comparing more than two distinct groups, some of the analysis will be unavailble. These analyses include mutual information analysis, amino acid frequency characterization, and linear discriminant analysis. Each of these analyses require binary classifications of the data.



Step 8: Visualize Averaged Position Sensitive Biophysical Properties

In this step we look at average biophysical properties as a function of sequence space, part of our special “positional encoding”. At this stage in the walkthrough we won’t bother showing the “before” snapshots of the GUI, as the only options are to press the button which generates the plot, and then move on to the next step. However, if you’re trying to compare the results to the data we get in this walkthrough, the generated plots are quite useful:


[image: Example screenshot of the averaged position-sensitive biophysical properties]


Note

Standard deviations are not shown, and ideally these would be calculated via bootstrapping



The figure in this step is saved as “pos_prop.pdf/png”, while the raw data is saved as “position_sensitive_mat#.dat” where the “#” again corresponds to the selected cluster number, or if comparing the original input datasets, the user-defined group number. This data file has as many rows as the number of sequences in the selected cluster or group, and has 61 x # AIMS positions columns. Ideally this data would be saved as a tensor of shape # sequences x 61 x # AIMS positions, however, this would require saving the data as a numpy object, which would be less friendly to other programming languages for replotting and reformatting. The 61 here refers to the 61 biophysical properties of AIMS (listed in the Biophysical Properties).

As a concrete example, cluster 10 in this walkthrough has 10 sequences, and 95 AIMS positions. So the first row of the position_sensitive_mat10.dat file here corresponds to the first sequence (which can be found in the “clust2seq_10.dat” output). The first 95 columns in this row correspond to the position sensitive charge (biophysical property 1 of 61). The next 95 columns correspond to the position sensitive hydrophobicity (biophysical property 2 of 61). And so on.

Step 9: Visualize Raw Position Sensitive Biophysical Properties

In this step, we visualize the position sensitive charge for all clones, not averaged. This figure can help provide a sense of how reliable the averages of the previous step are. Like all biophysical properties in AIMS, the charge is normalized, hence the minimum and maximum on the scales not equaling 1.


[image: Example screenshot of the non-averaged position-sensitive biophysical properties]

These figures are saved as “clone_pos_prop.pdf/png”. This figure helps to understand the figure generated in Step 8, which is simply this figure averaged over the y-axis. It is additionally important to note that the positional encoding in Steps 8 and 9 are consistent with the alignment scheme selected in Step 3, either central, bulge, right, or left aligned.

Step 10: Visualize Net Biophysical Properties

In this step, we are averaging the biophysical properties over all positions and all receptors. In other words, effectively averaging the figures generated in Step 9 over both the x- and the y-axes.


[image: Example screenshot of the net biophysical property figure step]


Note

A large standard deviation in these plots are to be expected, especially if users are analyzing original input datasets rather than selected cluster subsets



This figure is saved as “avg_props.pdf/png”.

Step 11: Calculate Shannon Entropy

In this step, we are calculating the Shannon Entropy of the chosen datasets, effectively the diversity of the receptors as a function of position. For more information on the Shannon Entropy, as well as the Mutual Information discussed in the next step, view the Information Theory section of the Core Functionalities.


[image: Example screenshot of the shannon entropy step]

This figure is saved as “shannon.pdf/png”.


Note

Due to the requirement for a binary comparison in subsequent steps, this is the last GUI screen if users are comparing more than 2 groups



** END MHC Analysis **

Due to the analysis of three distinct groups in this walkthrough, the MHC analysis ends here at step 11. However, as discussed previously these steps are identical to those in the immunoglobulin analysis. If you’d like to learn more about steps 12, 13, and 14, go back to the end of the Immunoglobulin Analysis with AIMS.

Otherwise, congratulations on completing the AIMS MHC walkthrough! Thanks for using the software, and be sure to reach out if there are any outstanding questions/unclear sections of this walkthrough.
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AIMS Basics

In this section, we will focus on the absolute basics that you need to know about while running AIMS. This includes the Input Formatting of the files used for the analysis, the Core Functionalities of the software, and the Biophysical Properties that are the central pillars of the analysis. This information is key whether users are interested in working with the AIMS GUI or with the AIMS Jupyter Notebooks. The hope is that if there are any fundamental questions with the meaning of a given output, or necessary troubleshooting with inputs, the users can find them here.


Input Formatting

At present, the AIMS software requires a specific input formatting to be read by the software. Future versions of the software will hopefully have more relaxed formatting requirements, assuming users request such functionality. Here we will go into specifics for each molecular species, but the general format maintained for all species involves a comma separated value (CSV) file with a header in the first row, and no associated metadata in the given file.

Immunoglobulin (TCR/Ab) Formatting

The immunoglobulin (Ig) input file formatting is the most flexible of the three, with options meant to satisfy the needs of any given AIMS input data. Specifically these data must contain only the complementarity determining region (CDR) loops, as AIMS excludes the framework regions of antibodies and TCRs in the analysis. An example of the proper input formatting for the first few lines of an input file can be seen below:

[Example file from AIMS/app/ab_testData/flu_poly.csv]
l1,l2,l3,h1,h2,h3
QSISSY,DAS,QHRSTWPPN,GGTFSSRA,IIPIFNTP,AREMATIFGRMDV
ESLLHSDGKTY,EVS,MQTIQLPGT,GGIMRRNG,IIAIFGTP,VASSGYHLHRETWGY
QDIKNY,HVS,HQCYNLPYT,GFIFGHFA,ISGGGLNT,ARFDSSGYNYVRGMVV
.
.
.





The key features are that 1. the general format must follow that of a comma separated value (csv) file. In this csv file each row represents a unique sequence, each column represents a given CDR loop, and each column is separated by a comma. 2. Each column must have a header with no sequence information in it. The contents of this header are not critical, as the standard AIMS Ig file loader disregards this header and replaces it. Descriptive headers are preferred, if only for downstream transparency of the data. 3. Single letter amino acid codes should be used, with only capitalized letters. The defined function “aimsLoad.convert_3let” can convert three letter codes to single letter codes [see API for more details… once I make this section]. 4. The sequences do not have any extranneous characters or spaces. Currently AIMS is capable of identifying an “X” in a sequence and by default removes these sequences. Any other non-amino acid single letter characters will result in an error, and spaces will be encoded into the AIMS matrix, which could confound analysis.

At present, AIMS does NOT identify other issues with sequences. Missing CDR loops in a sequence, spaces included in a sequence, or other miscellaneous mistakes will not result in an error, and could lead to inaccuracies in the downstream analysis. Either visual inspection or other quality control steps should be taken to ensure proper analysis. If analyzing multiple files at once, all input files must have the same number of loops.


Note

Currently, AIMS cannot analyze TCR/Ab inputs of 4 or 5 loops. For most repertoire analysis, the requirement to analyze such a dataset would be unexpected. Users should submit an issue on the GitHub if this analysis is needed for some reason.



MHC/MHC-Like Formatting

The current MHC/MHC-like analysis requires the most rigid and restrictive of all the input formatting, but this will hopefully change in future updates. Users can either input entire MHC sequences or just the platform domain sequences. Additionally, users can leverage these restrictive requirements to analyze other molecular species if needed. The initial input is a simple aligned FASTA, as seen below:

[Example file from AIMS/app/mhc_testData/hlaA_seqs.fasta]
>3VJ6_A Chain A, H-2 Class I Histocompatibility Antigen, D-37 Alpha Chain [Mus musculus]
------------------------------------------------------------
------------------------------------------------------------
-------------------------------------------------SPHSLRYFTTA
VSRPGLGEPRFIIVGYVDDTQFVRFDSDAENPRMEPRARWIEQEGPEYWERETWKAR
DMGRNFRVNLRTLLGYYNQSNDESHTLQWMYGCDVGPDGRLLRGYCQEAYDGQDYISLNE
DLRSWTANDIASQISKHKSEAVDEAH-QQRAYLQGPCVEWLHRYLRLGNETLQRSDPPKA
HVTHHPRSEDEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDGTFQKWAAV
VVPLGKEQYYTCHVYHEGLPEPLTLRWEPP------------------------------
-------------------------------------------------
>5VCL_A Chain A, H2-t23 Protein [Mus musculus]
------------------------------------------------------------
------------------------------------------------------------
------------------------------------------------MSSHSLRYFHTA
.
.
.





Importantly, each FASTA entry must be pre-aligned using BLAST or a similar alignment software. AIMS does not internally align the sequences, and requires that the inputs can be expected to be structurally very similar. For MHC and MHC-like molecules, this requirement is satisfied. If a subset of sequences align poorly for some reason, they can be included as a separate file. Each individual file will have its own user-specified region of the alignment that will ultimately be input into the analysis. The user specification can be done on-the-fly, or input as a separate file formatted as such:

[Example file from AIMS/app/mhc_testData/ex_cd1_hla_uda_uaa.csv]
Name,S1s,S1e/H1s,H1e/S2s,S2e/H2s,H2e
cd1,124,167,209,262,303
hla,170,210,260,306,348
uda,2,49,93,152,193
uaa,2,49,93,152,193





The above file is formatted again as a comma separated value (csv), with the first column giving the name of the dataset, and the remaining columns identifying the start and end point of four distinct structural features in the provided FASTA alignment. Specifically for the analysis of MHC and MHC-like molecules, these four structural features are the beta-strand of the alpha 1 domain, the alpha helix of the alpha 1 domain, the beta-strand of the alpha 2 domain, and the alpha helix of the alpha 2 domain. Each number represents either the start of one structural feature, the end of another structural feature, or both. In the example file, for the hla alignmemnt (corresponding to the FASTA above) the first beta strand starts at alignment position 170 and ends at position 210. Likewise, the first alpha helix starts at position 210 and ends at position 260. And so on.

Currently, the Phyre server (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) is recommended to identify these structural features. Other software may be used to identify the key structural features for analysis, but the numbering provided in standard Phyre outputs makes translation to the above csv file easy. Generally only one sequence should be necessary to be used as input, as structural similarity is a requirement for comparable analysis using AIMS. Users can take advantage of this ambiguity in the software to analyze any four connected structual features in evolutionarily and structurally related molecules in the AIMS GUI. Users comfortable with the Jupyter Notebooks can instead follow the Multi-Sequence Alignment formatting instructions.

Immunopeptidomics Formatting

This is the first of two sections that are not yet implemented in the AIMS GUI, but can be analyzed using the AIMS notebooks. Specifically, the AIMS_peptide.ipynb file can be used to analyze immunopeptidomics data. Again the input is simply a comma separated value (csv) formatted file. However, since the input should only have one column, the precise format is a little less important. An example can be seen below:

[Example file not yet on the GitHub]
pep_input
APATPAVVL
PSPEAAVAV
VALGGPHDP
PAALPVPSL
PTAPVTPSI
CPGASQPIL
DRGSCGVTV
.
.
.





In future releases, data related to mass spectrometry approaches used for the identification of these peptides will be included in the analysis. Metadata will be included in additional columns of the csv.

Multi-Sequence Alignment Formatting

Again, this multi-sequence alignment input is not yet available in the AIMS GUI, is available in the notebook. Unlike the MHC input formatting described above, structural features should be identified before being loaded into AIMS. Each entry should have the exact same number of characters, and an associated sequence name, as seen below:

[Example file not yet on the GitHub]
Dpr,Sequence
Dpr1,DKDVSWIRKRDLHILTAGGTTYTSD-----QINTEPKMSLSYTFNVVEL
Dpr2,DKSVSWIRKRDLHILTAGILTYTSD-----QVNTEPKISMAFRLNVIVT
Dpr3,DKSVSWIRKRDLHILTVGTATYTSD-----QVNTEPKMSMAFQLNIIEI
.
.
.





The required sequence name is used in the downstream analysis in this case, to help identify potential clusters of biophysically similar sequences. Unlike in the analysis of TCR, MHC, or peptide sequences, the associated names or identifiers for each sequence are more likely to be clinically or evolutionarily important.



Core Functionalities

Functionalities coming soon!



Biophysical Properties

Details on the BPHYS properties coming soon!
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AIMS Cluster


Dimensionality Reduction

Details on dimensionality reduction algorithms coming soon!



Picking the Proper Clustering Algorithm

Details on clustering algorithms coming soon!
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AIMS Jupyter Notebooks

While the GUI is useful for those with little to no experience using python, unfortunately given the time commitment required to create a functional GUI the available features incorporated can lag behind significantly. For the most up-to-date analysis pipelines, fastest code, and maximal flexibility, it is recommended that the Jupyter Notebooks are used. I have tried to explain step by step within the notebooks how to run them. It may take a while, but reading through the markdowns and comments should give the user a good feel for what each code block is doing.


Notes on Notebooks

If using Anaconda-Navigator, you should just be able to launch Jupyter Lab from the main application. If using terminal, you can install Jupyter lab using:

conda install -c conda-forge jupyterlab





and start using the notebooks by navigating to the notebooks directory in terminal and typing in:

jupyter lab







Notebook Options

Further info on what each of these notebooks does is coming soon!

AIMS_notebook

AIMS_single

AIMS_mhc

AIMS_peptide

cleaner_bootstrap

manuscript_analysis

therapeutic_analysis

make_pretty_alignments



Footnotes



            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  
API











Footnotes



            

          

      

      

    

  

    
      
          
            
  
Usage


Installation

To use Lumache, first install it using pip:

(.venv) $ pip install lumache







Creating recipes

To retrieve a list of random ingredients,
you can use the lumache.get_random_ingredients() function:

The kind parameter should be either "meat", "fish",
or "veggies". Otherwise, lumache.get_random_ingredients()
will raise an exception.

For example:

>>> import lumache
>>> lumache.get_random_ingredients()
['shells', 'gorgonzola', 'parsley']







Footnotes



            

          

      

      

    

  _images/8IgF.png
Normalized Charge

Normalized Hydrophobicity

0.4-

0.2-

0.0-

Step8 - Plotting Position-Sensitive Biophysical Properties

v

CDRIL  CDR2L  CDR3L CDR1H CDR2H CDR3H

—— Cluster 10
—— Cluster 11

0 20 40 60 80
Sequence Position

Get Properties





_images/8MHCpost.png
Step8 - Plotting Position-Sensitive Biophysical Properties

Get Properties





_images/11IgF.png
Stepll - Calculate Shannon Entropy AIMS

Shannon Entropy Provides a Proxy for Diversity

>
o

—e— Cluster 10
—e— Cluster 11

Shannon Entropy (Bits)
= = N N @ Fd
o o o o o o

e
o

o
o

I 1 i

0 20 40 60 80
Position

< Go Back Get Entropy Next >





_images/ania1.png
)'* \( /(\%

\( M
//(\ %/\‘\{\\//‘L/)\
\( \k \Y/-

v

/()K/( 5





_images/11MHCpost.png
000000000

333333333
(syg) Adonuz uouueys





_images/10IgF.png
Stepl0 - Plotting Average Properties

0.02
0.00

-0.02 |

Normalized Property Value

-0.04

-0.06

Charge Hydrophobicity Bulkiness Flexibility
Biophysical Property

Get Properties






_images/9IgF.png
Sequence Number

Step9 - Plotting Clone- and Position-Sensitive Properties

Cluster 10 - Charge Cluster 11 - Charge
0 0
0.4 0.4
2 2
0.2 0.2
2
41 £
24
0.0 § I 0.0
I3
6 =
3
@6
=-0.2 =0.2
8-
8
-0.4 -0.4
10
[ 20 40 60 80 0 20 40 60 80

< Go Back Get Properties Next >

AIMS





_images/10MHCpost.png
Stepl0 - Plotting Average Properties

0 edt
0.04 hla |
uda + uaa ‘
3 002
o
>
>
£
@
Q
<)
[
- 0.00
o
N
©
E
o
=z
-0.02
-0.04

Charge Hydrophobicity Bulkiness Flexibility
Biophysical Property

Get Properties






_images/9MHCpost.png
Sequence Number

Sequence Number

Step9 - Plotting Clone- and Position-Sensitive Properties
cd1 - Char e ° hla - Charge
00{ T | \I| “ || 04 i i‘ |i T B
I . oA
[l | | ‘
501 | r 2 |
' 0.0 g 40 I 0.0
751, |, I 5 ‘
-0.2 g -0.2
et 10D ||| 1 il
B L |I| h |||| |I||| o g0l |’ : o4
~o 100 150 200 0 50 100 150 200
uda + uaa - Charge 10
04
0.8
0.2
0.6
0.0
0.4
-0.2
0.2
-0.4
0.0
0.0 0.2 04 0.6 0.8 1.0
< Go Back Get Properties Next >

AIMS





_images/14Ig_compile.png
AIMS AIMS

LD1 Name LD1 Weight 3

LD1 Name LD1 Weight
Glustor 11

Flex-79 8740.105 2 Phobic1-56 -2.5177

Bulk-79 5582.0726 Phobic2-43 -2.4481

Flex-23 1380.2179 Phobic1-81 -2.3648

Flex-57 1204.5578 Kid9-80 2.2383

Phobic2-57 -1170.8137 Hot24-57 1.9431

Linear Discriminant 1

Phobic1-59 -911.4106

Bulk-55 1.9311

-10 Phobic1-60 872.8546 Flex-56 1.8159

Phobic1-8 646.8184 2 Hot22-81 1.7456

-20 Flex-81 -391.8572 Hot36-86 -1.7214

" Kid1-60 154.6098 -3 Phobic1-54 1.7107

e

Linear Discriminant Analysis

Linear Discriminant Analysis.
Dataset

Number of Input Vectors Dataset Number of Input Vectors

<Go Back Do LDA < Go Back Do LDA






_static/minus.png





_images/1Ig_compile.png
Stepl - Loading Files (Ab/TCR Version) Stepl - Loading Files (Ab/TCR Version)

Load file
Standard analysis is to compare two or more data files Standard analysis is to compare two or more data files

If you want to analyze only one data file, set this switch to “on”: Name

=/
File 1 Path [users/boughterct/Desktop/AIMS/app/ab_testData/flu_mono.csv

> __pycache__

If you want to analyze only one data file, set this switch to “on” ON OFF

> ab_testData
File 2 Path Load File 2 Jusers/boughterct/Desktop/AIMS/app/ab _testData/flu_poly.csv

> app_data

File 3 Path mhe_testData Load File 3 File 3 Path

new_folder
File 4 Path aims.kv File 4 Path

aims.py

aims_analysis.py
Soon Addwore Fles - - —_— “oosack Add More Fles -






_static/plus.png





_images/12IgF.png
< Go Back

20

'S
o

@
o

Sequence Position

80

Stepl2 - Calculate Mutual Information

Mutual Information is a More Sensitive Measure of Correlation

Cluster 10 MI - Cluster 11 MI

i []emi|0 (= (L
R 5 N ] o o
ol =1 1 " - s
A e | 13 - aals
B - Y ‘u | e TN
L L ] "
ke [ [0 B ng:
1.0 -I -.IJ. I.- I-_.. -.I: ]
- - " - - "an" - - "

20 40 60 80

Sequence Position

Get MI

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

Next >

AIMS





_images/13IgF.png
A Simple Difference in AA Frequency Between Groups

Stepl3 - Visualize Amino Acid Frequencies

Cluster 10 AA Freq - Cluster 11 AA Freq

o — — — I
80 —— -
— —— —_— r— —
560 i
% —
o
2 — —
2 —-— —
240 —
[}
@ — —
— — —
20 —
—_— — — -
0
A RNDTGC CO QEGU H I L KMTFUPSTWYV
< Go Back Get Frequency

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

Next >

AIMS





_static/file.png





_images/1MHC_compile.png
Stepl - Loading Files (MHC Version) Stepl - Loading Files (MHC Version)

Standard analysis is to compare two data files Standard analysis is to compare two data files

If you want to analyze only one data file, set this switch to "on™ ON If you want to analyze only one data file, set this switch to “on™ ON OFF

Load FASTA 1 FASTA File 1 Path ad FASTA 1 Jusers/boughterct/Desktop/AIMS/app/mhc _testData/cdl_seqgs.fasta
FASTA File 2 Path ad FASTA 2 JUsers/boughterct/Desktop/AIMS/app/mhc _testData/hlaA_seqgs fasta

FASTA File 3 Path ad FASTA 3 Jusers/boughterct/Desktop/AIMS/app/mhc _testData/UDA _seqs fasta
FASTA File 4 Path ad FASTA 4 |users/boughterct/Desktop/AIMS/app/mhc_testData/UAA _seqgs fasta

Add More FASTAs Add More FASTAs






_images/2IgID.png
Step2 - Identify the CDR loops of the Antibody/TCR. AIMS

Currently, you must have your 6 (or 3,2,1) CDR loops predefined in a CSV file.

Check tutorial files (ab _testData) for examples of proper formatting.

Below, input labels for the data loaded in on the previous screen:

File 0 File 1

Select number of loops in files:

6 Loops 3 Loops 2 Loops 1 Loop

° O O O

< Go Back Remove Expanded Clones: B Next >





_images/0launch.png
AIMS






_images/2MHC_compile.png
Step2 - Identify Key Structural Features

Enter the start and end points in your alignment for each structural feature of interest.

See tutorial files for @ more detailed explanation of how to generate these values
New Folder Name: folder

Name sls sle/Hls Hle/s2s s2e[H2s

Load Preformatted Matrix Enter Values Manually

Step2 - Identify Key Structural Features

Enter the start and end points in your alignment for each structural feature of interest.

See tutorial files for a more detailed explanation of how to generate these values.

L
Sls sle/His Hle/s2s s2e/H2s H2e
o |
R

Name





nav.xhtml

    
      Table of Contents


      
        		
          Using AIMS to Analyze Immune Repertoires
        


        		
          Installation Instructions
          
            		
              Initial Installation for Beginners
            


            		
              Installation of AIMS & Required Packages
            


          


        


        		
          AIMS GUI Walkthrough
          
            		
              Immunoglobulin Analysis with AIMS
            


            		
              MHC and MHC-Like Analysis with AIMS
            


          


        


        		
          AIMS Basics
          
            		
              Input Formatting
            


            		
              Core Functionalities
            


            		
              Biophysical Properties
            


          


        


        		
          AIMS Cluster
          
            		
              Dimensionality Reduction
            


            		
              Picking the Proper Clustering Algorithm
            


          


        


        		
          AIMS Jupyter Notebooks
          
            		
              Notes on Notebooks
            


            		
              Notebook Options
            


          


        


      


    
  

_images/4IgPost.png
Step4 - Inclusion of Data for Clustering

These optional data inclusions allow for assesments of how different dataset combinations cluster.

If testing many inclusion combinations, be aware that figures of the same type will be overwritten.

File O File1

Include in Clustering

NOTE: If only analyzing one or two files, data inclusion cannot be altered.

Generate Matrix






_images/4MHCpost.png
Step4 - Inclusion of Data for Clustering

These optional data inclusions allow for assesments of how different dataset combinations cluster.

If testing many inclusion combinations, be aware that figures of the same type will be overwritten.

Include in Clustering

Exclude from Clustering

NOTE: If only analyzing one or two files, data inclusion cannot be altered.

Generate Matrix






_images/3Ig_compile.png
Step3 - Generate Matrix Representation of Sequences AIMS Step3 - Generate Matrix Representation of Sequences AIMS Step3 - Generate Matrix Representation of Sequences AIMS

08
100 . 100
08 § :gs
gm0 )
04 H H
g
@ 200 ; 0
02
0
00 02 04 06 08 10 CORIL  CDR2L CDR3L CORIH CDRIL  CDR2L CDR3L. CDRIH CDR2H
Bulge Align Center Align Right Align Left Align Bulge Align Center Align Right Align Left Align Bulge Align Center Align Right Align Left Align

o © o

<Go Back Get Matrix < Go Back Get Matrix Next > <Go Back Get Matrix Next >





_images/3MHC_compile.png
Step3 - Generate Matrix Representation of Sequences AIMS Step3 - Generate Matrix Representation of Sequences AIMS

Horizontal white lines separate data from files loaded in previous step. Horizontal white lines separate data from files loaded in previous step.

0.8

5 @
06 255

H

8

§ 60
04 2
0.2
%o 02 o4 s o8 10

Strand 1

<Go Back Get Matrix _ <Go Back Get Matrix Next >






_images/6Ig_compile.png
Step6 - Begin Group Analysis AIMS

isualize the Clusters from the Last Window

EISANSGEYLCIVIIS IR EISIICH NN  Comparison Cluster 1 OR choose to compare original

Then, choose which two clusters to u

groups loaded in to AIMS

compare further in binary analysis.

Comparison Cluster 2

1
NOTE: Cluster count starts at 0 —

[if checked, cluster numbers ignored]

< Go Back Visualize Clusters

Step6 - Begin Group Analysis AIMS

isualize the Clusters frol Last Window

First, hit the Analyze Clusters button. el ECL TR ETg]

OR choose to compare original

0 groups loaded in to AIMS

Then, choose which two clusters to

compare further in binary analysis. )
Comparison Cluster 2

1

[if checked, cluster numbers ignored]

NOTE: Cluster count starts at 0

< Go Back Visualize Clusters Next >





_images/6MHCpost.png
Step6 - Begin Group Analysis

oy,

Comparison Cluster 1

Comparison Cluster 2

Visualize Clusters





_images/5Ig_compile.png
Step5 - Dimensionality Reduction

< Go Back Reduce Dim

Step5 - Dimensionality Reduction

< Go Back Reduce Dim

Cluster

AIMS

Select Input Data
Net Average Properties

Position Sensitive Properties

Select Dimensionality Reduction
Method of Choice

Reduce Dim Only 2D 3D

Reduce Via PCA
Reduce Via UMAP
Select Clustering Algorithm
KMeans # Clusters:
OPTICS Min Cluster Size:

DBSCAN Scan Radius:

AIMS

Select Input Data
Net Average Properties

Position Sensitive Properties

Select Dimensionality Reduction
Method of Choice

Reduce Dim Only 2D 3D
Reduce Via PCA
Reduce Via UMAP

Select Clustering Algorithm

KMeans #Clusters:

OPTICS Min Cluster Size:
DBSCAN Scan Radius:

Next >

Step5 - Dimensionality Reduction

< Go Back Reduce Dim

Step5 - Dimensionality Reduction

< Go Back Reduce Dim

AIMS

Select Input Data
Net Average Properties

Position Sensitive Properties

Select Dimensionality Reduction
Method of Choice

Reduce Dim Only 3D

Reduce Via PCA
Reduce Via UMAP

Select Clustering Algorithm
KMeans #Clusters: o
OPTICS Min Cluster Size: |4
DBSCAN Scan Radius: K&

Cluster

AIMS

Select Input Data
Net Average Properties

Position Sensitive Properties

Select Dimensionality Reduction
Method of Choice
Reduce Dim Only 2D 3D
Reduce Via PCA
Reduce Via UMAP

Select Clustering Algorithm

KMeans # Clusters:

OPTICS Min Cluster Size:

DBSCAN Scan Radius:

Cluster Next >





_images/5MHC_compile.png
a0

oors

-00zs

-ors

Step5 - Dimensionality Reduction

< Go Back Reduce Dim

Step5 - Dimensionality Reduction

o
Ha
uda

< Go Back Reduce Dim

AIMS

Select Input Data
Net Average Properties

Position Sensitive Properties

Select Dimensionality Reduction
Method of Choice

Reduce Dim Only 2D 3D

Reduce Via PCA o
Reduce Via UMAP

Select Clustering Algorithm

KMeans ® # Clusters:

OPTICS Min Cluster size: |&d

DBSCAN scan Radius:

AIMS

Select Input Data
Net Average Properties

Position Sensitive Properties

Select Dimensionality Reduction
Method of Choice
Reduce Dim Only 2D 3D
Reduce Via PCA ()
Reduce Via UMAP

Select Clustering Algorithm

KMeans © # Clusters:
OPTICS Min Cluster Size: |l

DBSCAN scan Radius: o

oluster

Step5 - Dimensionality Reduction

<Go Back Reduce Dim

Step5 - Dimensionality Reduction

o100 .

o075 ..

0025

0050

-o0rs

BT b0 06 o0 ois
Xt

< Go Back Reduce Dim

AIMS

Select Input Data
Net Average Properties

Position Sensitive Properties

Select Dimensionality Reduction
Method of Choice

Reduce Dim Only 3D

Reduce Via PCA .

Reduce Via UMAP

Select Clustering Algorithm

# Clustel

OPTICS Min Cluster size: |4

KMeans ®

Scan Radius: S

AIMS

DBSCAN

Select Input Data
Net Average Properties

Position Sensitive Properties

Select Dimensionality Reduction
Method of Choice

Reduce Dim Only 3D
Reduce Via PCA
Reduce Via UMAP

Select Clustering Algorithm

KMeans ® #Clusters: [

OPTICS Min Cluster size: &4

DBSCAN scan Radius: &

Cluster Next >





_images/7MHCpost.png
Step7 - Define Analysis Groups

Now, we move into a more directed analysis of the data

To do so, we must split our data into groups

cre G

Exclude from

Analysis






